

A Brief Introduction to Policy Gradient Method

朱小天 2018.10.12

Outline

- A brief introduction to policy gradient theorem
- Example: Learning Globally Optimized Object Detector via Policy Gradient
- Example: Towards Diverse and Natural Image Descriptions via a Conditional GAN

• 如何根据reward更新网络参数?

• 如何对采样求导?

 We might be given a parameterized probability distribution x ~ p(·; θ). In this case, we can use the score function (SF) estimator [3]:

$$\frac{\partial}{\partial \theta} \mathbb{E}_x \left[f(x) \right] = \mathbb{E}_x \left[f(x) \frac{\partial}{\partial \theta} \log p(x; \theta) \right].$$
(1)

This classic equation is derived as follows:

$$\frac{\partial}{\partial \theta} \mathbb{E}_{x} \left[f(x) \right] = \frac{\partial}{\partial \theta} \int dx \, p(x; \, \theta) f(x) = \int dx \, \frac{\partial}{\partial \theta} p(x; \, \theta) f(x) = \int dx \, p(x; \, \theta) \frac{\partial}{\partial \theta} \log p(x; \, \theta) f(x) = \mathbb{E}_{x} \left[f(x) \frac{\partial}{\partial \theta} \log p(x; \, \theta) \right].$$
(2)

This equation is valid if and only if $p(x; \theta)$ is a continuous function of θ ; however, it does not need to be a continuous function of x [4].

• Code (pytorch):

```
def update_policy(states, actions, returns):
    action_probs = policy(states)
    action_dist = torch.distributions.Categorical(action_probs)
    action_loss = -action_dist.log_prob(actions) * returns
    entropy = action_dist.entropy()
    loss = torch.mean(action_loss - 1e-4 * entropy)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    return
```

Example: Object Detection

A Company of the second second

7

• The relation information between RoIs that is ignored in Faster R-CNN can be further utilized to improve object detectors.

• The objective of object detection can be formulated as:

 $\mathcal{H} = \max_{\theta} \operatorname{mAP}(F_{\theta}(I), B),$
subject to $|F_{\theta}(I)| \le N_{bb}$

• We can use a policy gradient method to compute the expected gradient of the nondifferentiable reward function as follows:

 $\nabla L_I(\theta) = -\mathbb{E}_a[r(a)\nabla_\theta \log(p_a)] \tag{6}$

• Action *a* can be defined as selecting a set of bounding boxes from all candidates

 p_a is the probability of action a, therefore, $p_a = \prod_{b \in a} p_b$. We can further simplify Equation 6 as:

$$\mathbb{E}_{a}[r(a)\nabla_{\theta}\log(p_{a})]$$

$$= \sum_{a}p(a)r(a)\nabla_{\theta}\log(\prod_{b\in a}p_{b})$$

$$= \sum_{a}[p(a)r(a)\sum_{b\in B'}[\delta(a,b)\nabla_{\theta}\log(p_{b})]]$$

$$= \sum_{b\in B'}[\nabla_{\theta}\log(p_{b})\sum_{a}[p(a)r(a)\delta(a,b)]]$$

define $r(b) = \sum_{a} [p(a)r(a)\delta(a, b)].$

• Sampling several actions during a single gradient calculation is more efficient.

Example: Object Detection

• Experiment results:

Detection model	training method	greedy NMS	soft NMS	mAP	mAP ₅₀	mAP ₇₅	mAP_S	mAP_M	mAP_L
Faster R-CNN	standard	\checkmark		36.3	57.3	38.8	17.7	42.4	51.4
Faster R-CNN	standard		\checkmark	36.9	57.2	40.1	18.0	42.7	52.1
Faster R-CNN	OHEM	\checkmark		36.9	57.3	40.2	17.7	42.7	52.4
Faster R-CNN	ours ($\gamma = 0$)	\checkmark		37.6	60.0	40.2	19.6	42.6	52.0
Faster R-CNN	ours ($\gamma = 1$)	\checkmark		38.3	60.6	40.9	20.7	43.2	52.6
Faster R-CNN	ours ($\gamma = 1$)		\checkmark	38.5	60.8	41.3	20.9	43.4	52.7
Faster R-CNN with FPN	standard	\checkmark		37.7	58.5	40.8	19.3	41.7	52.3
Faster R-CNN with FPN	ours ($\gamma = 1$)	\checkmark		39.5	60.2	43.3	22.7	44.1	51.9

Rao, Y., Lin, D., Lu, J., & Zhou, J. Learning Globally Optimized Object Detector via Policy Gradient. CVPR2018. 10

• Existing efforts primarily focus on fidelity, while other essential qualities of human languages, e.g. naturalness and diversity, have received less attention.

			BLEU	E-GAN
	-MLE	A cow standing in a field next to houses		-
		A cow standing in a field with houses		-
A DAEA	9	A cow standing in a field of grass		
	z	Many cows grazing in the grass field in front of houses		
	GAI	Several cows grazing on grassy area in a pasture		
	Ġ	A heard of cattle grazing on a lush green field		
profest	c	Grey cow walking in a large green field in front of house		
	Ima	A cow in a large open field with a house in the background		
	ž	A cow standing in a large open grass field		
	E	A train that is pulling into a station		
	μ	A train that is going into a train station		
Contract P	G	A train that is parked in a train station		•
Selected.	N	A passenger train is going down the tracks		
	GAI	A beige blue and white train blocking a train track		
	Ġ	A large long train is going down the tracks in a waiting area		
	E	A train pulling into a station outside during the day		
	huma	A passenger train moving through a rail yard		
		A long passenger train pulling up to a station		

- G: a generator to produce descriptions conditioned on images
- E: an evaluator to assess how well a description fits the visual content.

• Difficulties:

- The production of sentences is a discrete sampling process, which is non-differentiable.
- A sentence can only be evaluated when it is completely generated.
- Solutions:
 - Use policy gradient to compute gradient
 - Evaluate an expected future reward when the sentence is partially generated

 $V_{\boldsymbol{\theta},\boldsymbol{\eta}}(I,\mathbf{z},S_{1:t}) = \mathbb{E}_{S_{t+1:T} \sim G_{\boldsymbol{\theta}}(I,\mathbf{z})}[r_{\boldsymbol{\eta}}(I,S_{1:t} \oplus S_{t+1:T})].$

• we can derive the gradient of this objective w.r.t. θ as:

$$\tilde{\mathbb{E}}\left[\sum_{t=1}^{T_{\max}}\sum_{w_t\in\mathcal{V}}\nabla_{\boldsymbol{\theta}}\pi_{\boldsymbol{\theta}}(w_t|I,\mathbf{z},S_{1:t-1})\cdot V_{\boldsymbol{\theta}',\boldsymbol{\psi}}(I,\mathbf{z},S_{1:t}\oplus w_t)\right]$$

Dai, B., Fidler, S., Urtasun, R., & Lin, D. Towards Diverse and Natural Image Descriptions via a Conditional GAN. ICCV2017¹³

• Experiment results:

		BLEU-3	BLEU-4	METEOR	ROUGE_L	CIDEr	SPICE	E-NGAN	E-GAN
coco	human	0.290	0.192	0.240	0.465	0.849	0.211	0.527	0.626
	G-MLE	0.393	0.299	0.248	0.527	1.020	0.199	0.464	0.427
	G-GAN	0.305	0.207	0.224	0.475	0.795	0.182	0.528	0.602
Flickr	human	0.269	0.185	0.194	0.423	0.627	0.159	0.482	0.464
	G-MLE	0.372	0.305	0.215	0.479	0.767	0.168	0.465	0.439
	G-GAN	0.153	0.088	0.132	0.330	0.202	0.087	0.582	0.456

Table 1: This table lists the performances of different generators on MSCOCO and Flickr30k. On BLEU- $\{3,4\}$, METEOR, ROUGE_L, CIDEr, and SPICE, *G-MLE* is shown to be the best among all generators, surpassing human by a significant margin. While *E-NGAN* regard *G-GAN* as the best generator, *E-GAN* regard *human* as the best one.

• Experiment results:

	RAIDES			A GLOY CONDUCTOR	
\mathbf{z}_1	a baseball player holds a bat up to hit the ball	a man riding a snowboard down a slope	a group of people sitting around a table having a meal in a restaurant	a group of men dressed in suits posing for a photo	
Z ₂	a baseball player holding white bat and wear blue baseball uniform	a person standing on a snowboard sliding down a hill	a young man sitting at a table with coffee and a lot of food	a couple of men standing next to each other wearing glasses	
Z ₃	a professional baseball player holds up his bat as he watches	a man is jumping over a snow covered hill	a pretty young man sitting next to two men in lots of people	some people dressed in costume and cups	

Figure 6: This figure shows example images with descriptions generated by G-GAN with different z.